Kernel-type Estimation of Bivariate Distribution Function for Associated Random Variables

نویسندگان

  • C. Azevedo
  • P. E. Oliveira
چکیده

Let Xn, n ∈ IN, be a stationary sequence of associated random variables with uniform distribution on [0, 1] and F the distribution function of (X1, Xk+1), for fixed k ∈ IN. We introduce a kernel estimator for F and study its asymptotic properties and moments, characterizing their convergence rates. From these we derive the optimal rate for the bandwidth, which is of order n. Conditions are also given to ensure that the finite dimensional distributions are asymptotically gaussian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association

Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...

متن کامل

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Multivariate and Multimodal Wind Distribution Model based on Kernel Density Estimation

This paper presents a new method to accurately characterize and predict the annual variation of wind conditions. Estimation of the distribution of wind conditions is necessary (i) to quantify the available energy (power density) at a site, and (ii) to design optimal wind farm configurations. We develop a smooth multivariate wind distribution model that captures the coupled variation of wind spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005